17 research outputs found

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe

    Quantitative interpretation of atmospheric carbon records over the last glacial termination

    Get PDF
    The glacial/interglacial rise in atmospheric pCO2 is one of the best known changes in paleoclimate research, yet the cause for it is still unknown. Forcing the coupled oceanatmosphere- biosphere box model of the global carbon cycle BICYCLE with proxy data over the last glacial termination, we are able to quantitatively reproduce transient variations in pCO2 and its isotopic signatures (d13C, D14C) observed in natural climate archives. The sensitivity of the Box model of the Isotopic Carbon cYCLE (BICYCLE) to high or low latitudinal changes is comparable to other multibox models or more complex ocean carbon cycle models, respectively. The processes considered here ranked by their contribution to the glacial/interglacial rise in pCO2 in decreasing order are: the rise in Southern Ocean vertical mixing rates (>30 ppmv), decreases in alkalinity and carbon inventories (>30 ppmv), the reduction of the biological pump ( 20 ppmv), the rise in ocean temperatures (15 20 ppmv), the resumption of ocean circulation (15 20 ppmv), and coral reef growth (<5 ppmv). The regrowth of the terrestrial biosphere, sea level rise and the increase in gas exchange through reduced sea ice cover operate in the opposite direction, decreasing pCO2 during Termination I by 30 ppmv. According to our model the sequence of events during Termination I might have been the following: a reduction of aeolian iron fertilization in the Southern Ocean together with a breakdown in Southern Ocean stratification, the latter caused by rapid sea ice retreat, trigger the onset of the pCO2 increase. After these events the reduced North Atlantic Deep Water (NADW) formation during the Heinrich 1 event and the subsequent resumption of ocean circulation at the beginning of the Blling-Allerd warm interval are the main processes determining the atmospheric carbon records in the subsequent time period of Termination I. We further deduce that a complete shutdown of the NADW formation during the Younger Dryas was very unlikely. Changes in ocean temperature and the terrestrial carbon storage are the dominant processes explaining atmospheric d13C after the Blling-Allerd warm interval
    corecore